Data privacy technologies are essential for implementing information systems with privacy by design.Privacy technologies clearly are needed for ensuring that data does not lead to disclosure, but also that statistics or even data-driven machine learning models do not lead to disclosure. For example, can a deep-learning model be attacked to discover that sensitive data has been used for its training? This accessible textbook presents privacy models, computational definitions of privacy, and methods to implement them. Additionally, the book explains and gives plentiful examples of how to implement—among other models—differential privacy, k-anonymity, and secure multiparty computation.Topics and features:Provides integrated presentation of data privacy (including tools from statistical disclosure control, privacy-preserving data mining, and privacy for communications)Discusses privacy requirements and tools fordifferent types of scenarios, including privacy for data, for computations, and for usersOffers characterization of privacy models, comparing their differences, advantages, and disadvantagesDescribes some of the most relevant algorithms to implement privacy modelsIncludes examples of data protection mechanismsThis unique textbook/guide contains numerous examples and succinctly and comprehensively gathers the relevant information. As such, it will be eminently suitable for undergraduate and graduate students interested in data privacy, as well as professionals wanting a concise overview.Vicenç Torra is Professor with the Department of Computing Science at Umeå University, Umeå, Sweden.
Les mer
1. Introduction.- 2. Basics of Cryptography and Machine Learning.- 3. Privacy Models and Privacy Mechanisms.- 4. User's Privacy.- 5. Avoiding Disclosure from Computations.- 6. Avoiding Disclosure from Data Masking Methods.- 7. Other.- 8. Conclusions.
Les mer
Data privacy technologies are essential for implementing information systems with privacy by design. Privacy technologies clearly are needed for ensuring that data does not lead to disclosure, but also that statistics or even data-driven machine learning models do not lead to disclosure. For example, can a deep-learning model be attacked to discover that sensitive data has been used for its training? This accessible textbook presents privacy models, computational definitions of privacy, and methods to implement them. Additionally, the book explains and gives plentiful examples of how to implement—among other models—differential privacy, k-anonymity, and secure multiparty computation.
Topics and features:
Provides integrated presentation of data privacy (including tools from statistical disclosure control, privacy-preserving data mining, and privacy for communications)Discusses privacy requirements and tools for different types of scenarios, including privacy for data, for computations, and for usersOffers characterization of privacy models, comparing their differences, advantages, and disadvantagesDescribes some of the most relevant algorithms to implement privacy modelsIncludes examples of data protection mechanisms
This unique textbook/guide contains numerous examples and succinctly and comprehensively gathers the relevant information. As such, it will be eminently suitable for undergraduate and graduate students interested in data privacy, as well as professionals wanting a concise overview.
Vicenç Torra is Professor with the Department of Computing Science at Umeå University, Umeå, Sweden.
Les mer
Presents the main privacy models and the main technologies Describes some of the most relevant algorithms Offers characterization, comparison, and examples of privacy models
Produktdetaljer
ISBN
9783031128363
Publisert
2022-11-05
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Upper undergraduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Forfatter