When the first edition of this textbook published in 2011, it constituted a substantial revision of the best-selling Birkhäuser title by the same author, A Concise Introduction to the Theory of Integration. Appropriate as a primary text for a one-semester graduate course in integration theory, this GTM is also useful for independent study. A complete solutions manual is available for instructors who adopt the text for their courses. This second edition has been revised as follows: §2.2.5 and §8.3 have been substantially reworked. New topics have been added. As an application of the material about Hermite functions in §7.3.2, the author has added a brief introduction to Schwartz's theory of tempered distributions in §7.3.4. Section §7.4 is entirely new and contains applications, including the Central Limit Theorem, of Fourier analysis to measures. Related to this are subsections §8.2.5 and §8.2.6, where Lévy's Continuity Theorem and Bochner's characterization of the Fourier transforms of Borel probability on ℝN are proven. Subsection 8.1.2 is new and contains a proof of the Hahn Decomposition Theorem. Finally, there are several new exercises, some covering material from the original edition and others based on newly added material.
Les mer
When the first edition of this textbook published in 2011, it constituted a substantial revision of the best-selling Birkhäuser title by the same author, A Concise Introduction to the Theory of Integration.
Les mer
Preface.- Notation.- 1. The Classical Theory.-2. Measures. -3. Lebesgue Integration.-4. Products of Measures.-5. Changes of Variable.-6. Basic Inequalities and Lebesgue Spaces.-7. Hilbert Space and Elements of Fourier Analysis.-8. Radon–Nikodym, Hahn, Daniell Integration, and Carathéodory- Index.
Les mer
When the first edition of this textbook published in 2011, it constituted a substantial revision of the best-selling Birkhäuser title by the same author, A Concise Introduction to the Theory of Integration. Appropriate as a primary text for a one-semester graduate course in integration theory, this GTM is also useful for independent study. A complete solutions manual is available for instructors who adopt the text for their courses. This second edition has been revised as follows: §2.2.5 and §8.3 have been substantially reworked. New topics have been added. As an application of the material about Hermite functions in §7.3.2, the author has added a brief introduction to Schwartz's theory of tempered distributions in §7.3.4. Section §7.4 is entirely new and contains applications, including the Central Limit Theorem, of Fourier analysis to measures. Related to this are subsections §8.2.5 and §8.2.6, where Lévy's Continuity Theorem and Bochner's characterization ofthe Fourier transforms of Borel probability on ℝN are proven. Subsection 8.1.2 is new and contains a proof of the Hahn Decomposition Theorem. Finally, there are several new exercises, some covering material from the original edition and others based on newly added material.From the reviews of the first edition: “The presentation is clear and concise, and detailed proofs are given. … Each section also contains a long and useful list of exercises. … The book is certainly well suited to the serious student or researcher in another field who wants to learn the topic. …the book could be used by lecturers who want to illustrate a standard graduate course in measure theory by interesting examples from other areas of analysis.” (Lars Olsen, Mathematical Reviews 2012)  “…It will help the reader to sharpen his/her sensitivity to issues of measure theory, and to renew his/her expertise in integration theory.” (Vicenţiu D. Rădulescu, Zentralblatt MATH, Vol. 1228, 2012)
Les mer
Solutions manual is available to instructors who adopt the textbook for their course Second edition revised with new topics, some reworked text, new exercises Suitable for a one-semester graduate course in integration theory as well as for independent study Includes supplementary material: sn.pub/extras Request lecturer material: sn.pub/lecturer-material
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783030584771
Publisert
2020-11-24
Utgave
2. utgave
Utgiver
Vendor
Springer Nature Switzerland AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet

Forfatter

Om bidragsyterne

Daniel W. Stroock is Emeritus professor of mathematics at MIT. He is a respected mathematician in the areas of analysis, probability theory and stochastic processes. Prof. Stroock has had an active career in both the research and education.   From 2002 until 2006, he was the first holder of the second Simons Professorship of Mathematics.  In addition, he has held several administrative posts, some within the university and others outside.  In 1996, the AMS awarded him together with his former colleague jointly S.R.S. Varadhan the Leroy P. Steele Prize for seminal contributions to research in stochastic processes. Finally, he is a member of both the American Academy of Arts and Sciences, the National Academy of Sciences and a foreign member of the Polish Academy of Arts and Sciences.