This monograph deals with the quantitative overconvergence phenomenon in complex approximation by various operators. The book is divided into three chapters. First, the results for the Schurer-Faber operator, Beta operators of first kind, Bernstein-Durrmeyer-type operators and Lorentz operator are presented. The main focus is on results for several q-Bernstein kind of operators with q > 1, when the geometric order of approximation 1/qn is obtained not only in complex compact disks but also in quaternion compact disks and in other compact subsets of the complex plane. The focus then shifts to quantitative overconvergence and convolution overconvergence results for the complex potentials generated by the Beta and Gamma Euler's functions. Finally quantitative overconvergence results for the most classical orthogonal expansions  (of  Chebyshev, Legendre, Hermite,  Laguerre and Gegenbauer kinds) attached to vector-valued functions are presented. Each chapter concludes with a notes and open problems section, thus providing stimulation for further research. An extensive bibliography and index complete the text. 

 

This book is suitable for researchers and graduate students working in complex approximation and its applications, mathematical analysis and numerical analysis.

Read more

This monograph deals with the quantitative overconvergence phenomenon in complex approximation by various operators.

​​Overconvergence in C of Some Bernstein-Type Operators.- Overconvergence and Convergence in C of Some Integral Convolutions​.- Overconvergence in C of the Orthogonal Expansions​.

This monograph deals with the quantitative overconvergence phenomenon in complex approximation by various operators. The book is divided into three chapters. First, the results for the Schurer-Faber operator, Beta operators of first kind, Bernstein-Durrmeyer-type operators and Lorentz operator are presented. The main focus is on results for several q-Bernstein kind of operators with q > 1, when the geometric order of approximation 1/q^n is obtained not only in complex compact disks but also in quaternion compact disks and in other compact subsets of the complex plane. The focus then shifts to quantitative overconvergence and convolution overconvergence results for the complex potentials generated by the Beta and Gamma Euler's functions. Finally quantitative overconvergence results for the most classical orthogonal expansions  (of  Chebyshev, Legendre, Hermite,  Laguerre and Gegenbauer kinds) attached to vector-valued functions are presented. Each chapter concludes with a notes and open problems section, thus providing stimulation for further research. An extensive bibliography and index complete the text. 

 

This book is suitable for researchers and graduate students working in complex approximation and its applications, mathematical analysis and numerical analysis.

Read more
Presents quantitative overconvergence results in complex approximation Generalizes and extends the results for certain cases of the complex q-Bernstein operators Includes a notes and open problems section at the end of each chapter, promoting future research Includes supplementary material: sn.pub/extras
Read more

Product details

ISBN
9781461470977
Published
2013-04-27
Publisher
Springer-Verlag New York Inc.; Springer-Verlag New York Inc.
Height
235 mm
Width
155 mm
Age
Research, P, 06
Language
Product language
Engelsk
Format
Product format
Innbundet

Author