This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024.
The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on:
Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI.
Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI.
Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI.
Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.
Les mer
This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024.
.- Intrinsically interpretable XAI and concept-based global explainability.
.- Seeking Interpretability and Explainability in Binary Activated Neural Networks.
.- Prototype-based Interpretable Breast Cancer Prediction Models: Analysis and Challenges.
.- Evaluating the Explainability of Attributes and Prototypes for a Medical Classification Model.
.- Revisiting FunnyBirds evaluation framework for prototypical parts networks.
.- CoProNN: Concept-based Prototypical Nearest Neighbors for Explaining Vision Models.
.- Unveiling the Anatomy of Adversarial Attacks: Concept-based XAI Dissection of CNNs.
.- AutoCL: AutoML for Concept Learning.
.- Locally Testing Model Detections for Semantic Global Concepts.
.- Knowledge graphs for empirical concept retrieval.
.- Global Concept Explanations for Graphs by Contrastive Learning.
.- Generative explainable AI and verifiability.
.- Augmenting XAI with LLMs: A Case Study in Banking Marketing Recommendation.
.- Generative Inpainting for Shapley-Value-Based Anomaly Explanation.
.- Challenges and Opportunities in Text Generation Explainability.
.- NoNE Found: Explaining the Output of Sequence-to-Sequence Models when No Named Entity is Recognized.
.- Notion, metrics, evaluation and benchmarking for XAI.
.- Benchmarking Trust: A Metric for Trustworthy Machine Learning.
.- Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI.
.- Conditional Calibrated Explanations: Finding a Path between Bias and Uncertainty.
.- Meta-evaluating stability measures: MAX-Sensitivity & AVG-Senstivity.
.- Xpression: A unifying metric to evaluate Explainability and Compression of AI models.
.- Evaluating Neighbor Explainability for Graph Neural Networks.
.- A Fresh Look at Sanity Checks for Saliency Maps.
.- Explainability, Quantified: Benchmarking XAI techniques.
.- BEExAI: Benchmark to Evaluate Explainable AI.
.- Associative Interpretability of Hidden Semantics with Contrastiveness Operators in Face Classification tasks.
Les mer
Produktdetaljer
ISBN
9783031637865
Publisert
2024-07-10
Utgiver
Vendor
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet